Questions on Gravity and Orbits MS

1. Using the usual symbols write down an equation for
(i) Newton's law of gravitation

$$
\begin{equation*}
F=G \frac{M_{1} M_{2}}{R^{2}} \tag{1}
\end{equation*}
$$

(ii) Coulomb's law
$F=K \frac{Q_{1} Q_{2}}{R^{2}}$

State one difference and one similarity between gravitational and electric fields.
Difference
Gravitational fields are attractive but electric fields can be attractive or repulsive (1)

Similarity
Both have an \propto range (1)

A speck of dust has a mass of $1.0 \times 10-18 \mathrm{~kg}$ and carries a charge equal to that of one electron. Near to the Earth's surface it experiences a uniform downward electric field of strength $100 \mathrm{~N} \mathrm{C}^{-1}$ and a uniform gravitational field of strength $9.8 \mathrm{~N} \mathrm{~kg}^{-1}$.
Draw a free-body force diagram for the speck of dust. Label the forces clearly.

Calculate the magnitude and direction of the resultant force on the speck of dust.
Electric force $\quad=100 \mathrm{~N} \mathrm{C}^{-1} \times 1.6 \times 10^{-19} \mathrm{C}$
$=1.6 \times 10^{-17} \mathrm{~N}$ (1)
Weight $\quad=9.8 \times 10-18 \mathrm{~N}$ (1)
Net force is upward (1)
Force $=6.2 \times 10^{-18} \mathrm{~N}$ (1)
2. The diagram (not to scale) shows a satellite of mass m, in circular orbit at speed v_{s} around the Earth, mass M_{E}. The satellite is at a height h above the Earth's surface and the radius of the Earth is R_{E}.

Using the symbols above write down an expression for the centripetal force needed to maintain the satellite in this orbit.

$$
\begin{equation*}
F=\frac{m_{\mathrm{s}} v_{\mathrm{s}}^{2}}{R_{\mathrm{E}}+h} \tag{2}
\end{equation*}
$$

Write down an expression for the gravitational field strength in the region of the satellite.

$$
\begin{equation*}
\boldsymbol{g}=\frac{G M_{\mathrm{E}}}{\left(R_{\mathrm{E}}+h\right)^{2}} \tag{2}
\end{equation*}
$$

State an appropriate unit for this quantity.

$$
\mathrm{N} \mathrm{~kg}^{-1} \quad \text { (1) }
$$

Use your two expressions to show that the greater the height of the satellite above the Earth, the smaller will be its orbital speed.

$$
\begin{align*}
& \frac{m_{s} v_{\mathrm{s}}^{2}}{R_{\mathrm{E}}+h}=\frac{G M_{\mathrm{E}} m_{\mathrm{s}}}{\left(R_{\mathrm{E}}+h\right)^{2}} \\
& \mathbf{v}_{\mathrm{s}}{ }^{2}=\frac{\mathbf{G} M_{\mathrm{E}}}{\boldsymbol{R}_{\mathrm{E}}+\boldsymbol{h}} \tag{1}
\end{align*}
$$

Greater h P smaller v_{s} since G, M_{E} constant (1)

Explain why, if a satellite slows down in its orbit, it nevertheless gradually spirals in towards the Earth's surface.

As it slows $\frac{G M_{\mathrm{E}} m_{\mathrm{s}}}{\left(R_{\mathrm{E}}+h\right)^{2}}>\frac{m_{\mathrm{s}} v_{\mathrm{s}}{ }^{2}}{R_{\mathrm{E}}+h}$
The "spare" gravitational force not needed to provide the centripetal acceleration pulls the satellite nearer to the Earth (1)

3. Forces

(i) $F=G M_{\mathrm{E}} m / R^{2} \quad 1$
(ii) $F=\mathrm{GM}_{\mathrm{M}} \mathrm{m} / \mathrm{r}^{2} \quad 1$

Distance R

$$
\frac{G M_{E} m}{R^{2}}=\frac{G M_{m} m}{r^{2}}
$$

OR
$\frac{M_{E}}{M_{m}}=\frac{R^{2}}{r^{2}}$ OR $\left.\left(\frac{M_{E}}{M_{m}}\right)^{1 / 2}=\frac{R}{r}\right\}$
$\frac{81}{1}=\frac{R^{2}}{\left(3.9 \times 10^{7} \mathrm{~m}\right)^{2}}$
$R=3.5 \times 10^{8} \mathrm{~m}$
Evidence that equating forces has occurred
Correct substitution 1
Correct answer 1
4. Gravitational attraction of Earth on Moon

Use $\frac{G m_{1} m_{S}}{r^{2}}$, ie $\frac{G M m}{(60 R)^{2}}$ (1)
1

Orbital speed of the Moon
$\frac{m v^{2}}{r}=\frac{G M m}{r^{2}}$ (1)
Use of $r=60 R$, ie $60 \times 6.4 \times 10^{6} \mathbf{(1)}$
Rearrangement ie $v=\sqrt{\frac{6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2} \times 6 \times 10^{24} \mathrm{~kg}}{60 \times 6.4 \times 10^{6} \mathrm{~m}}}$ (1)
$=1020 \mathrm{~m} \mathrm{~s}^{-1}$ (1)
Orbit period
Time $=\frac{2 \pi r}{v} / \omega=\frac{2 \pi}{T}(\mathbf{1})$
Calculation: $\frac{2 \times \pi \times 60 \times 6.4 \times 10^{6}}{1020 \mathrm{~m} \mathrm{~s}^{-1}}$
Divide by 3600×24 (1)
Using 1020m/s: (27-27.4) days
Using 1000m/s: (27.8-28) days (1)
5. Word equation:

Force proportional to product of masses and inversely proportional to (distance / separation) squared
[No force 0/2]
OR
$F=\frac{G \times \text { mass }_{1} \times \text { mass }_{2}}{(\text { distance })^{2}}$
[or (separation) ${ }^{2}$ instead of bottom line]
Calculation of force:
From Newton's law OR idea that force $=$ weight $=m g_{\text {planet }}$
$F=\frac{6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 6.42 \times 10^{23} \mathrm{~kg} \times 1 \mathrm{~kg}}{\left(3.40 \times 10^{6}\right)^{2} \mathrm{~m}^{2}}$
[Substitution in correct equation only]
OR
$g_{\text {mars }}=\frac{\mathrm{G} \times 6.42 \times 10^{23} \mathrm{~kg}}{\left(3.4 \times 10^{6}\right)^{2} \mathrm{~m}^{2}}$
$=3.7 \mathrm{~N}$
Smaller

Explanation of reasoning:
g is less, but ρ is similar/same [so R is less]
[$2^{\text {nd }}$ mark is consequential on first mark]
6. Base units of $G: \mathrm{kg}^{-1} \mathrm{~m}^{3} \mathrm{~s}^{-2}$

Equation homogeneity:
Correct substitution of units of $G, r^{3}\left(\mathrm{~m}^{3}\right), M(\mathrm{~kg}) \quad 1$
leading to S^{2} and linked to T^{2}
[Allow e.c.f. of their base unit answer into substitution mark]
Use of relationship to find mass of the Earth
Any two from:
Adding $20000+6400$ (1)
Converting km to m (1)
h to s($\times 43$ 200) (1)
2
Answer $M=5.8(4) \times 10^{24} \mathrm{~kg}$ (1) 1

7. Expression for gravitational force

$F=G M m / r^{2}(\mathbf{1}) \quad 1$
Derived expression
Reasoning step must be clear, e,g, $m g=G M m / r^{2}$ (1)
so $g=G M / r^{2}$ (1)
Sun's gravitational field strength
$g=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \times 1.99 \times 10^{30} \mathrm{~kg} /\left(1.50 \times 10^{11} \mathrm{~m}\right)^{2}(\mathbf{1})$
$=5.9 \times 10^{-3}\left(\mathrm{~N} \mathrm{~kg}^{-1}\right)$ [no u.e.] (1)
Diagram
(i) Jupiter marked closest to Earth (1)
(ii) (Labelled) arrows towards Jupiter and Sun (radially) (1) 2

Maximum percentage change
$3.2 \times 10^{-7} / 5.9 \times 10^{-3} \times 100 \%=0.005 \%(\mathbf{1}) 1$
Maximum value of the ratio
Use of $g \propto M / r^{2}$ (1)
Hence $g_{\text {Venus }} g_{\text {jupiter }}=152 / 400=0.56[$ OR 9/16] (1) 2
Comment
E.g. reference to \% change caused by Jupiter (combined with effect caused by Venus)
OR g of (all) planets is very small compared with g of Sun (1) 1
8. Show that:

$$
\begin{aligned}
& F=G M m / r^{2}(\mathbf{1}) \\
& =6.9 \times 1024(\mathrm{~N})(\mathbf{1})
\end{aligned}
$$

Calculation:

$$
a=F / M=3.1 \times 10^{-6} \mathrm{~m} \mathrm{~s}^{-2} \mathbf{(1)} \quad 1
$$

Explanation:
Planet exerts gravitational force on star (1)
Planet revolves around star, so direction of force changes with time (1)
Diagram showing force (or effect of force on star due to planet) (1)

Speed of star:

$$
\begin{align*}
& \text { Using } v=2 \pi \mathrm{r} / T \text { and } a=v / r \mathbf{(1)} \\
& r=v T / 2 \pi \text { so } a=2 \pi v / T \\
& \text { so } v=a T / 2 \pi \mathbf{(1)} \\
& =3.1 \times 10^{-6} \times 9.2 \times 10^{7} \div 2 \pi \text { [allow ecf for } a \text {] } \\
& =45.4 \mathrm{~m} \mathrm{~s}^{-1} \tag{3}
\end{align*}
$$

Calculation:

$$
\begin{aligned}
\Delta \lambda=\lambda v / c & =656 \times 10^{-9} \times 45 / 3.0 \times 10^{8}(\mathbf{1}) \\
& =9.8 \times 10^{-14} \mathrm{~m}
\end{aligned}
$$

[Accept $2 \times \Delta \lambda$ for maximum marks] (1) 2
9. Formula

$$
F=G M m / r^{2}(\mathbf{1})
$$1

Show that $\tan \theta=M R^{2} / M_{e} \underline{r^{2}}$
Horizontally $T \sin \theta=F_{\text {mountain }}$ and vertically $T \cos \theta=m g(\mathbf{1})$
[OR vector diagram showing forces and θ]
Dividing equations [OR from vector diag.]: $\tan \theta=F_{\text {mountain }} \div m g$ (1)
and $F_{\text {mountain }}=G M m \div r^{2}$ and $m g=G M_{\mathrm{e}} m \div R^{2}$ (1)
so $\tan \theta=G M m / r^{2} \div G M_{\mathrm{e}} m / R^{2}$ (1)
Value for gravitational constant, G
Volume $=4 / 3 \pi R^{3}=4 / 3 \pi\left(6.4 \times 10^{6} \mathrm{~m}\right)^{3}=1.1 \times 10^{21}\left(\mathrm{~m}^{3}\right)(\mathbf{1})$
$M_{\mathrm{e}}=V \rho=1.1 \times 10^{21} \mathrm{~m}^{3} \times 4.5 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}=4.9 \times 10^{24}(\mathrm{~kg})(\mathbf{1})$
$\mathrm{G}=\frac{g R^{2}}{M_{e}}=\frac{3 g R^{2}}{4 \pi R^{3} \rho}=\frac{3 g}{4 \pi R \rho}=\frac{3 \times 9.8 \mathrm{~m} \mathrm{~s}^{-2}}{4 \pi \times 6.4 \times 10^{6} \mathrm{~m} \times 4.5 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}}$
$=8.1 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$ (1)
Reason for inaccuracy
Any one from:

- Maskelyne’s density is incorrect
- Earth/mountain not uniform density
- (centre of) mass of mountain not known
- mountain is not spherical
- difficult to determine vertical / measure very small θ
- Earth not a perfect sphere / point mass (1)

Earth's core
Much denser than mountain (1)

10. Minimum mass for comet

Volume $=4 / 3 \pi\left(9 \times 10^{3 / 2}\right)^{3} \mathrm{~m}^{3}\left(=3.8 \times 10^{11} \mathrm{~m}^{3}\right)(\mathbf{1})$
Use of mass $=$ density \times volume
$=500 \mathrm{~kg} \mathrm{~m}^{-3} \times 4 / 3 \pi\left(9 \times 10^{3} / 2\right)^{3} \mathrm{~m}^{3} \mathbf{(1)}$
$1.91 \times 10^{14} \mathrm{~kg}(1)$
Jupiter's gravitational field strength
$g=G M / r^{2}(\mathbf{1})$
$=6.6720 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{-2} \mathrm{~kg},-2 \times 1.8987 \times 10^{27} \mathrm{~kg} /\left(96009 \times 10^{3}\right)^{2} \mathbf{(1)}$
$=13.7432 \mathrm{~N} \mathrm{~kg}^{-1}(\mathbf{1})$

Explanation
Any two from:

- Jupiter's force/field strength different on the two sides of the comet (1)
- difference sufficient to pull comet apart (1)
- Jupiter's force larger than (cohesive) force between particles of comet (1) Max 2

Difference and similarity between gravitational and electric fields

Difference: e.g. gravitational fields only attractive, electrical can be attractive or repulsive, gravitational fields due to mass, electrical due to charge, cannot shield (1) g-field, can shield E field
Similarity: e.g. follow equivalent mathematical formulae, both obey inverse square law (1) 2
11. Definitions:

An electric field is a region where charged objects experience a force ($\mathrm{E}=\mathrm{F} / \mathrm{Q}$) (1) 1
A gravitational field is a region where masses experience a force $(g=F / m)(1) \quad 1$
Similarities:

- Both fields obey an inverse square law OR inverse square equations quoted (1)
- Both fields are radial for point objects / spherical distributions (1)
- Both fields have an infinite range / field strength approaches zero a long way from source (1)
$\max 2$
Differences:
- Electric forces can be attractive or repulsive but gravitational forces are always attractive (1)
- Electric forces are (much) stronger than gravitational forces OR comparison of size of coupling constants in the two force equations (1)
- Electric forces only act on charged particles but gravitational forces act on all matter (1)
- Electric forces can be shielded (e.g. by use of a Faraday cage) but gravitational forces cannot (1) max 3

12. Magnitude of gravitational force on Cassini
$\begin{array}{ll}F=G M m / r^{2} & 1 \\ \text { Expression } & \\ g=F / m(\mathbf{1}) & \end{array}$
so $g=G M / r^{2}(\mathbf{1})$
Maximum acceleration
Appreciation that acceleration $=g$-field (1)
Addition of orbital height to radius of Venus (1)
$g=G \times 4.87 \times 10^{24} \mathrm{~kg} /\left(6384 \times 10^{3}\right)^{2}$
$=7.97 \mathrm{~m} \mathrm{~s}^{-2}$
3
Effect of acceleration on velocity of Cassini
Any 2 from:

- Acceleration is at right angles to direction of motion
- Speed unchanged
(Velocity changed since) direction changed Max 2

